MODULE INFORMATION SHEET

Name of Module Unit	Mathematics II
Name in polish language	Matematyka Semestr III
Module type	compulsory
Form of studying	full-time day courses
Level of study	undergraduate course (B.Sc. level)
Type of study (for extra-mural	-
courses)	
Programme	Environmental Engineering
Speciality	Environmental Engineering
Responsible department	Faculty of Mathematics and Information Sciences
	Department of Geometry/Zakład Podstaw Geometrii
Responsible person	Dr Krystyna Kibalczyc

Semester	Lectures(E)	Tutorials	Laboratory	Computer Exercises	Projects	ECTS
3	15	15				3

Objectives (summary)

- 1. Making the students familiar with elements of complex analysis.
- 2. Making the students use the Laplace transform in practice.

Prerequisites

Knowledge of mathematics from : Algebra, Calculus I and II.

Rules of integrated grade

0,5 tutorial grade + 0,5 lecture grade

Recommended readings

- 1. E. Kreyszig, Advanced Engineering Mathematics, John Wiley@ Sons, inc, 1999.
- 2. Glyn James, Advanced Modern Engineering Mathematics, Addison- Wesley, 1999.
- 3. C. Ray Wylie, Advanced Engineering Mathematics, McGraw-Hill, 1975.

Contents of lectures (syllabus)

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Complex functions. Complex differentiation. The Cauchy-Riemann	7	S
	equations. Laurent series. Singularities, zeros and residues. Cantour		
	integrals. The Cauchy integral theorem. The residue theorem.		
2	The Laplace transform. Transforms of simple functions. Existence of	8	S
	the Laplace transform. Properties of the Laplace transform. The		
	inverse transform. Evaluation of inverse transforms. Applications of		
	the Laplace transforms to solution of differential and integral		
	equations.		
	Total	15	hours

S – topics listed in the legal study programme standards from 12.07.2007 Ex – extended topics

Lecturers

Dr Krystyna Kibalczyc

Assessment method

One written test from theory on the last lecture.

Contents of tutorials

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Complex mappings. Inversion mapping. Bilinear mappings.	1	S
2	Analytic functions.	1	S
3	Mappings revisited.	1	S
4	Taylor series. Laurent series.	1	S
5	Singularities, zeros and residues of complex functions.	1	S
6	Evaluations the contour integral by the Cauchy integral theorem.	1	S
7	The Laplace transform, the definition and properties.	1	S
8	Transforms of simple functions	1	S
9	The first shift theorem. Derivative of transform.	1	S
10	Evaluation of inverse transforms. Transforms of integrals.	1	S
11	Applications of the Laplace transforms to solution of ordinary linear	1	S
	differential equations first- order with constants coefficients		
12	Applications of the Laplace transforms to solution of ordinary linear	1	S
	differential equations second- order with constants coefficients		
13	Applications of the Laplace transforms to solution integral equations.	1	S
14	Engineering applications	1	S
15	Test	1	
	Total	15	hours

S – topics listed in the legal study programme standards from 12.07.2007 Ex – extended topics

Persons responsible for tutorials

Dr Krystyna Kibalczyc

Assessment method for tutorials

Final test at the end of semester and students activity during tutorials.