MODULE INFORMATION SHEET

Name of Module Unit	Informatics II	
Name in Polish language	Informatyczne podstawy projektowania II	
Module type	Compulsory	
Form of studying	full-time day courses	
Level of study	undergraduate course (B.Sc. level)	
Type of study (for extra-mural	-	
courses)		
Programme	Environmental Engineering	
Speciality	Environmental Engineering	
Responsible department	Department of Informatics and Environment Quality	
	Research	
Responsible person	dr inż. Wiktor Treichel	

Semester	Lectures(E)	Tutorials	Laboratory	Computer Exercises	Projects	ECTS
4				30		3

Objectives (summary)

The main purpose of the module is to introduce students to MATLAB, an universal and high level programming language of scientific and engineering computing. Students should acquire the skills in integration of engineering computing, graphical presentation, visualisation and programming in MATLAB environment. Moreover, an introduction to Simulink package will give the possibility of modelling and simulation of dynamic systems (continuous and discrete) in the field of environmental engineering. After the course, the students will be able to analyze and solve basic numerical and environmental engineering problems in their further study.

Prerequisites

Information Technology, Calculus I and II, Algebra with geometry

Rules of integrated grade setting

Grade of computer exercises.

Recommended readings

MATLAB software documentation

Holzbecher E. – Environmental modelling using MATLAB, Springer Verlag, Berlin 2007 Hornberger G., Wiberg P. – Numerical methods in the Hydrological Sciences, Special Publication Series 57, AGU 2005

Klee H. – Simulation of dynamic systems with MATLAB and Simulink, CRC Press, 2007 Elnashaie S. – Numerical techniques for chemical and biological engineers using MATLAB, Springer 2007

Contents of computer exercises

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Introduction to MATLAB environment. Graphical User Interface,	2	S
	Matlab language, matrix and element-by-element calculations		
2	Basic mathematical operation and functions. Relations. Logical	2	S
	operators and functions. Matlab language structures: conditional		
	instructions and loops.		
3	Programming in MATLAB, m-files, scripts and functions	2	S
4	2D graphics in MATLAB	2	S
5	3D graphics in MATLAB. Visualisation	2	S
6	Introduction to Simulink. Examples of simple dynamic system	2	S/Ex
	modelling		
7	Simulink – modelling of environmental dynamic systems	2	S/Ex
8	Plotting 1D and 2D functions. Working with data files in Matlab	2	
	environment		
9	Introduction to numerical methods. Solving the nonlinear equations.	4	S/Ex
	Finding roots of polynomial. Interpolation. Approximation		
10	Solving systems of linear equations. Numerical integration	2	
11	Numerical methods for solving first order ordinary differential	4	S/Ex
	equations		
12	Solving individual problems from environmental engineering	4	S/Ex
	Total	30	Hours

S – topics listed in the legal study programme standards from 12.07.2007 Ex – extended topics

Persons responsible for computer exercises

dr inż. Wiktor Treichel

Assessment method for computer exercises

Continuous assessment. Practical test of MATLAB using. Assessment of individual project.