MODULE INFORMATION SHEET

Name of Module Unit	Meteorology
Name in polish language	Meteorologia
Module type	compulsory / elective
Form of studying	full-time day courses
Level of study	undergraduate course (B.Sc. level)
Type of study (for extra-mural	-
courses)	
Programme	Environmental Engineering
Speciality	Environmental Engineering
Responsible department	Department of Environmental Protection and Management
Responsible person	Dr inż. Małgorzata Zdunek

Semester	Lectures(E)	Tutorials	Laboratory	Computer Exercises	Projects	ECTS
4	30 (Exam)	-	-	-	15	5

Objectives (summary)

Meteorology is an introductory course on major physical and dynamical processes determining properties of the atmosphere in different spatial and temporal scales. Although focus is on weather processes, the examples of the application of meteorology in environmental protection are also included.

At the end of this course, students should:

- explain the structure of the earth atmosphere and the variability of meteorological parameters
- understand weather phenomena
- understand forces of motion in the atmosphere
- explain the impact of meteorological situation on air quality
- know how to estimate solar and wind energy resources
- access and interpret the real-time meteorological information and the weather forecast

Prerequisites

Physics I, II Fluid mechanics

Rules of integrated grade setting

60% of lectures grade, 40% of project grade

Recommended readings

Molders N., Kramm G., 2014: Lectures in Meteorology. Springer.

Ahrens D.C., 2008: Essentials of meteorology. Brooks-Cole.

Petty G.W., 2008: A First Course in Atmospheric Thermodynamics. Sundog Publishing, Madison, WI.

Holton J. R., 2008: An introduction to dynamic meteorology. Elsevier.

Lynch A., Cassano J., 2006: Applied Atmospheric Dynamics. John Wiley & Sons, England

Ackerman S., Knox J. 2003: Meteorology - Understanding the Atmosphere. Prentice-Hall, Englewood Cliffs, NJ, USA.

Lutgens F. K., E. J. Tarbuck. 1986: The atmosphere: an introduction to meteorology. (wyd.3) Prentice-Hall, Englewood Cliffs, NJ, USA.

Contents of lectures (syllabus)

	Topics	Time	Scope
		(hrs.)	(S/Ex)
1	Introduction.	2	S
2	Motion in the atmosphere (forces, Coriolis effect, equation of	6	S
	motion, geostrophic wind, waves in the atmosphere, global		
	circulation, local winds)		
	Solar and Earth radiation. Radiative transfer. Energy budget		
3	Basic of synoptic meteorology (air masses, cyclogenesis, fronts)	2	S
4	Origin, composition and the structure of the atmosphere. Hydrostatic	2	S
	equation. Standard atmosphere.		
5	Solar and Earth radiation. Radiative transfer. Energy budget	2	S
6	Satellite measurements.	2	S
7	Atmospheric stability.	1	S
8	Thermodynamics of moist air. Condensation, clouds and	5	S
	precipitation.		
9	Planetary boundary layer – structure and diurnal evolution.	2	S
10	Planetary boundary layer – turbulence and mixing.	2	S
11	Numerical weather forecast. Verification of forecast.	4	Ex
	Total	30	hours

S – topics listed in the legal study programme standards from 12.07.2007 Ex – extended topics

Lecturers

Dr inż. Małgorzata Zdunek

Assessment method

exam

Contents of guided projects

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Analysis of meteorological situation based on synoptic reports,	7	S
	weather maps, and satellite and radar imagery.		
2	Interpretation of NWP information.	4	Ex
3	Atmospheric stability – the interpretation of Stuve diagram and upper	4	Ex
	air soundings		
	Total	15	hours

S – topics listed in the legal study programme standards from 12.07.2007 Ex – extended topics

Persons responsible for guided projects

Dr inż. Małgorzata Zdunek

Assessment method for guided projects

Project grade based on sum of credits obtained per each sub-project (90%) and attendance (10%)