MODULE INFORMATION SHEET

Name of Module Unit	Air Pollution Control
Name in polish language	Ochrona atmosfery
Module type	compulsory / elective
Form of studying	full-time day courses
Level of study	graduate course (M.Sc. level)
Type of study (for extra-mural	-
courses)	
Programme	Environmental Engineering
Speciality	Environment Protection Engineering
Responsible department	Chair of Environmental Protection and Management
Responsible person	Prof. dr hab inż. Katarzyna Juda-Rezler

Semester	Lectures(E)	Tutorials	Laboratory	Computer Exercises	Projects	ECTS
2	30				15	3

Learning outcomes (knowledge, skills, competences)

The objective of this course is to deliver knowledge about atmospheric environment, ambient air pollution and pollution control.

Learning outcomes – understanding and attributing air pollution problem, its driving forces, processes and phenomena, impacts and control options.

Competences: confirmed ability of applying knowledge in particular problems and applications.

Prerequisites

Basic knowledge of meteorology, environmental physics and chemistry

Rules for integrated grade setting

Integrated grade is a weighted mean of the grades from lectures (60%) and projects (40%).

Recommended readings

- 1. Vallero D.A., 2014: Fundamentals of Air Pollution, 5th Edition, Academic Press, San Diego.
- 2. Theodore L., 2008: Air pollution control equipment calculations, Wiley & Sons, Hoboken, New Jersey.
- 3. Seinfield J.H., Pandis S.N., 2016: Atmospheric Chemistry and Physics: from air pollution to climate change, 3rd edition, Wiley & Sons, Hoboken.
- 4. Air quality in Europe. Last available Technical Report of the European Environment Agency (EEA).
- 5. EU Directives on ambient air quality and the limitation of emissions (CAFE, IED, MCP and Eco-design Directives)
- 6. EU regulations concerning EURO emission standards

Contents of lectures (syllabus)

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Air pollution essentials, the natural versus polluted atmosphere.	2	
2	Air quality nowadays. Global, regional and local air pollution problem, major pollutants, smog phenomenon.	2	
3	Air pollution sources, emission inventories and databases.	2	
4	Chemistry and physics of air pollutants.	2	
5	Direct and indirect effects of air pollution: environment, human health and welfare.	2	
6	Air pollution assessment and management.	4	
7	The regulatory control of air pollution. EU legislation. Air quality criteria and standards. Emission standards.	4	
8	Control of Air Pollution: Sustainable methods of preventing air pollution.	4	
9	The engineering control of air pollution. Control devices, technologies and systems in stationary and mobile sources.	6	
10	Final test	2	
	Total	30	hours

S – topics listed in the legal study programme standards from 12.07.2007

Ex – extended topics

Lecturers

Prof. dr hab. inż. Katarzyna Juda-Rezler

Assessment method

Final test from lectures (open questions). Min. 50% of points are required to pass.

Contents of guided projects

	Topics	Time	Scope
		(hrs.)	(S/Ex)
1	Introduction to the guided projects.	1	
2	Calculations of air pollutants' emission from road transport.	4	
3	Air pollution control equipment calculations for large stationary	4	
	sources.	4	
4	Determination of air quality management measures.	4	
5	Final test	2	
	Total	15	hours

S – topics listed in the legal study programme standards from 12.07.2007

Ex – extended topics

Persons responsible for guided projects

Dr inż. Magdalena Reizer; dr inż. Katarzyna Maciejewska

Assessment method for guided projects

Credit for projects – 1 test and defense of 3 projects. Min. 50% of points are required to pass.