MODULE INFORMATION SHEET

Name of Module Unit	e of Module Unit Introduction to Remote Sensing of Environmen		
Name in polish language	Wstęp do teledetekcji środowiska		
Module type	compulsory		
Form of studying	full-time day courses		
Level of study	graduate course (M.Sc. level)		
Type of study (for extra-mural	-		
courses)			
Programme	Environmental Engineering		
Speciality	Environment Protection Engineering		
Responsible department	Department of Informatics and Environmental Studies		
Responsible person	Prof. dr hab. inż. Jarosław Zawadzki		

Semester	Lectures(E)	Tutorials	Laboratory	Computer Exercises	Projects	ECTS
3	15			30		3

Learning outcomes (knowledge, skills, competences)

The objective of the course is to teach the students the fundamental concepts of remote sensing of earth surface and give to them basic skills of remote sensing image processing. The general approach of the course is task-based learning, with an emphasis on computer practice, supplemented only by necessary amount of theory. Beyond exploring the principles of remote sensing this course relates them to environmental problems and analysis. The course is based mainly on UNESCO Bilko remote sensing learning system.

Prerequisites

Calculus I, II, III, Information Technology

Physics I, II, Statistics in Environmental Sciences

Rules for integrated grade setting

Integrated grade is calculated from the formula: 0.5E + 0.5CE, where E is final exam grade, CE denotes for home works and active participation.

Recommended readings

- 1. Jensen, J.R. (1986) Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice-Hall, New York, 1986.
- 2. Barrett, E.C. and L.F. Curtis (1992) *Introduction to Environmental Remote Sensing*, 3rd edition. Chapman and Hall, London, 1992.
- 3. Remote Sensing and Image Interpretation, 6th Edition, Thomas Lillesand, Ralph W. Kiefer, Jonathan Chipman (University of Wisconsin, Madison), 2008.

Exemplary pages on remote sensing and image interpretation:

UNESCO Bilko Home Page

http://www.noc.soton.ac.uk/bilko/index.php

Eeuropean Space Agency Education

http://www.esa.int/SPECIALS/Education/

NASA Education

http://www.nasa.gov/audience/forstudents/index.html

Contents of lectures (syllabus)

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Electromagnetic energy and remote sensing. Fundamentals of remote sensing.	2	S
2	Phenomena related to solar radiation in the atmosphere. Energy interaction with the earth's surface. Spectral reflectance curves.	2	
3	Sensors, platforms, satellite orbits, remote sensing data acquisition systems. Specific properties of remote sensing data – an introduction.	2	S
4	Optical and thermal remote sensing	1	S
5	Microwave remote sensing, Synthetic Aperture Radar (SAR), Interferometric synthetic aperture radar, (InSAR) remote sensing, Lidar.	2	S
6	Global Earth Observation System of Systems, an overview of contemporary ESA's space missions.	2	S
7	Soil Moisture and Ocean Salinity Mission as an example of ESA's Living Planet mission.	2	Ex
8	Remote sensing in environmental applications. Local scale applications. The latest advances in the field.	2	S
_	Total	15	hours

S- topics listed in the legal study programme standards from 12.07.2007 Ex- extended topics

Lecturers

Prof. dr hab. inż. Jarosław Zawadzki

Assessment method

Final exam

Contents of computer exercises

	Topics	Time	Scope
		(hrs.)	(S/Ex)
1	Geometric correction of an Advanced Very High Resolution	2	S
	Radiometer (AVHRR) image, of the Mediterranean Sea.		
2	Covariance and correlation matrices and interpreting principal	2	S
	components analysis loadings		
3	Advanced uses of formula documents, including Boolean algebra,	2	S
	trigonometric functions, modular arithmetic		
4	The aim of this lesson is to show how a stacked set of raster layers can	2	S
	be manipulated as a simple Geographic Information System (GIS)		
	using formula documents to perform the necessary operations.		
5	Applying geographical coordinate grids to images	2	S
6	Opening binary flat files in Bilko	2	
7	Using MERIS level 1B data as an example, this lesson shows how to	2	S
	use the bit-wise operators of formula documents with flag coding		
	information that is provided with some images.		

	Total	30	hours
11	Advanced individual projects	6	
	coral bleaching.		
	satellite measurements of sea surface temperature (SST) to predict		
10	teaches how to use NOAA Coral Reef Watch (CRW) data based on		LA
10	Calculating thermal stress and predicting coral bleaching. This lesson	4	Ex
	ground-truthing survey data, then to learn how to carry out an unsupervised classification and compare the outputs of each method.		
9	Supervised classification of land cover and assess its accuracy using	4	S
Q	mapping vegetation) can be created.	4	C
	these, and explains how libraries of generic formulae (in this case, for		
	indices, explores how to use Bilko formula documents to implement		
8	This lesson introduces a range of two-band and three-band vegetation	2	S

S- topics listed in the legal study programme standards from 12.07.2007

Ex – extended topics

Persons responsible for computer exercises

Dr inż. Piotr Fabijańczyk

Assessment method for computer exercises

Accomplishment computer exercises participation, active participation, final test.