MODULE INFORMATION SHEET

Name of Module Unit	Alternative energy sources
Name in polish language	Alternatywne źródła energii
Module type	compulsory / elective
Form of studying	full-time day courses
Level of study	graduate course (M.Sc. level)
Type of study (for extra-mural	-
courses)	
Programme	Environmental Engineering
Speciality	Environment Protection Engineering
Responsible department	Chair of Environmental Protection and Management
Responsible person	Prof. dr hab. inż. Lech Łobocki

Semester	Lectures(E)	Tutorials	Laboratory	Computer Exercises	Projects	ECTS
4	15				30	3

Learning outcomes (knowledge, skills, competences)

Students will gain general knowledge on the current status and perspective of alternative energy production and use, and familiarize with selected technologies. They will master skills in estimation of power production potential in selected technologies (such as wind power potential, insolation, etc.), siting procedures, and familiarize with certain aspects of design and management.

Prerequisites

Environmental Physics; Meteorology

Rules for integrated grade setting

Final exam 60%, assignments 40%

Recommended readings

Due to rapid development in this field, lists of recommended reading for individual topics is provided through the course website and updated for each course.

Contents of lectures (syllabus)

	Topics	Time	Scope
		(hrs.)	(S / Ex)
	Introduction: needs for alternative energy sources, classification of	1	S
1	alternative energy sources, current and projected energy demands,		
	development scenarios		
	Wind power: advantages and shortcomings of wind power, wind	2	S
2	climatology, wind turbines and their characteristics. Environmental		
	and economic aspects of wind energy production. Principles of		
	estimating the wind power potential for siting purposes.		
	Solar power: solar energy resources and its availability. Solar &	2	S
	terrestrial radiation basics. Conversion methods. Solar collectors,		
3	concentration solar plants, photovoltaic cells – characteristics of		
	individual technologies, technological, economic and environmental		
	aspects. Principles of estimating energy production.		
	Energy storage. Electrochemical batteries, capacitors, mechanical	2	S
4	devices. Hydrogen as energy storage mediums, hydrogen production		
_	and storage, fuel cells. Technological, economic and environmental		
	aspects of energy storage.		
	Nuclear power: resources, technological potential, current status of	2	S
5	nuclear power production. Basic concepts, nuclear fission and		
)	radioactive decay, fuels and reactions, reactor types. Economic cost,		
	environmental issues and nuclear safety concerns.		
6	Geothermal power: resources, exploitation methods, technologies.	2	S
0	Limitations, economic and environmental aspects.		
	Energy form solid waste. Incineration of solid waste and fuel from	4	Ex
7	solid waste. Landfill gas extraction and utilization. Biogas from		
	digestion of organic waste.		
	Total	15	hours

S- topics listed in the legal study programme standards from 12.07.2007 Ex- extended topics

Lecturers

Prof. Lech Łobocki, dr inż. Piotr Manczarski

Assessment method

Examination

Contents of guided projects

	Topics	Time	Scope
		(hrs.)	(S / Ex)
1	Estimating the wind power potential for turbine siting using routine meteorological data	10	S
2	Estimation of the energy production of a solar installation (collector, photovoltaic cell battery)	12	S
3	Estimation of the energy potential of biogas extracted from landfill site	8	Ex
	Total	30	hours

S- topics listed in the legal study programme standards from 12.07.2007 Ex- extended topics

Persons responsible for guided projects

Dr inż. Małgorzata Zdunek, dr inż. Piotr Manczarski

Assessment method for guided projects

Assignment report grades, current progress, timely completion of assignments