The Impact of Microwave Drying on the Structure of Exemplary Soils—Insights Using X-ray Microtomography
Łukasz Dominik Kaczmarek, Małgorzata Jastrzębska, Tomasz Wejrzanowski
In the field of soil drying methods, rapid microwave heating is progressively replacing conventional techniques. Due to the specific heat transport caused by microwaves, the drying process can significantly modify soil structure, which, in turn, can influence mechanical and filtration characteristics. In this study, we compared structural changes of exemplary non-cohesive (medium quartz sand (MSa)) and cohesive soil (silty clay mainly composed of kaolinite (siCl)). The sample materials were subjected to three different drying methods: air-drying, conventional oven (CO) drying, and microwave oven (MO) drying (MO). Soil structure was studied using X-ray microtomography (XµCT) and described in detail by image analysis methods. The study showed that the analyzed types of heating had a negligible effect on the structure of the sands, but a significant impact in the case of silty clay. Such a phenomenon is discussed and explained in this paper. The study advances the testing of soils microwave drying in a geotechnical laboratory.