Accuracy of the UAV-Based DEM of Beach–Foredune Topography in Relation to Selected Morphometric Variables, Land Cover, and Multitemporal Sediment Budget
Joanna Rotnicka, Maciej Dłużewski, Maciej Dąbski, Mirosław Rodzewicz, Wojciech Włodarski & Anna Zmarz
Recent developments in unmanned aerial vehicles (UAVs) have resulted in high-resolution digital elevation models (DEMs) of vulnerable coastal environments, including beach–foredune topography. If performed repetitively, they can offer an excellent tool to determine the spatial and temporal changes in the sediment budget, which may be required for proper land management. However, the quality of a UAV, slope parameters, and vegetation significantly influence DEM accuracy. The aim of this study is to compare precise GPS-RTK transects across a section of the South Baltic coast in Poland with those obtained from a DEM based on high-resolution and high-accuracy images obtained by a wind-resistant, high-quality fixed-wing UAV during beyond visual line of sight operation (BVLOS). Different land cover classes, slope inclination, and general curvature, as well as surface roughness, were taken into consideration as possible factors influencing the uncertainty. The study revealed that marram grass greatly affects the accuracy of the UAV-derived model and that the uncertainty of the UAV-derived DEM increases together with increasing slope inclination and, to a lesser degree, with increasing general slope curvature. We showed that sediment budget determinations with the use of a UAV-based DEM are correct only where grass cover is sparse, in our study, up to 20% of the area.