The Importance of the Microclimatic Conditions Inside and Outside of Plant Buildings in Odorants Emission at Municipal Waste Biogas Installations
Marta Wiśniewska , Andrzej Kulig , Krystyna Lelicińska-Serafin
Municipal waste biogas plants are an important element of waste treatment and energy policy. In this study, odorant concentrations and emissions were measured together with the air temperature (T) and relative humidity (RH) to confirm the hypothesis that the microclimatic conditions have an important impact on the level of odorant emission at municipal waste biogas plants. A simple correlation analysis was made to evaluate the strength and the direction of the relationship between the odorant concentration and emission and air temperature and relative humidity. The mean volatile organic compound (VOC) and NH3 concentrations vary depending on the stage of the technological line of the analysed municipal waste biogas plants and are in the following ranges, respectively: 0–38.64 ppm and 0–100 ppm. The odorant concentrations and emissions correlated statistically significantly with T primarily influences VOC concentrations and emissions while RH mainly affects NH3 concentrations and emissions. The strongest correlations were noted for the fermentation preparation section and for emissions from roof ventilators depending on the analysed plant. The smallest influence of microclimatic factors was observed at the beginning of the technological line—in the waste storage section and mechanical treatment hall. This is due to the greater impact of the type and quality of waste delivered the plants. The analysis of correlation between individual odorants showed significant relationships between VOCs and NH3 for most stages of the technological line of both biogas plants. In the case of technological sewage pumping stations, a significant relationship was also observed between VOCs and H2S. The obtained results may be helpful in preparing strategies to reduce the odours from waste treatment plants.