Magnetite and Hematite in Advanced Oxidation Processes Application for Cosmetic Wastewater Treatment

Piotr Marcinowski, Dominika Bury, Monika Krupa, Dominika Ścieżyńska, Prasanth Prabhu, Jan Bogacki

Wastewater from a cosmetic factory, with an initial total organic carbon (TOC) of 146.4 mg/L, was treated with Fe2O3/Fe0/H2O2, Fe3O4/Fe0/H2O2, light/Fe2O3/Fe0/H2O2, and light/Fe3O4/Fe0/H2O2 processes. The light-supported processes were more effective than the lightless processes. The fastest TOC removal was observed during the first 15 min of the process. Out of the four tested kinetic models, the best fit was obtained for the modified second-order reaction with respect to the TOC value. The best treatment efficiency was obtained for the light/Fe3O4/Fe0/H2O2 process with 250/750 mg/L Fe3O4/Fe0 reagent doses, a 1:1 hydrogen peroxide to Chemical Oxygen Demand (H2O2/COD) mass ratio, and a 120 min process time. These conditions allowed 75.7% TOC removal to a final TOC of 35.52 mg/L and 90.5% total nitrogen removal to a final content of 4.9 mg/L. The five-day Biochemical Oxygen Demand to Chemical Oxygen Demand (BOD5/COD) ratio was increased slightly from 0.124 to 0.161. Application of Head Space Solid-Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) analysis allows for the detection and identification of 23 compounds contained in the raw wastewater. The identified compounds were eliminated during the applied process. The HS-SPME-GC-MS results confirmed the high efficiency of the treatment processes.

Further information

List of papers in WUT respository

Zmiana rozmiaru fontu