Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity

Edyta B. Hendiger , Marcin Padzik , Agnieszka Żochowska , Wanda Baltaza , Gabriela Olędzka , Diana Zyskowska , Julita Bluszcz , Sylwia Jarzynka , Lidia Chomicz , Marta Grodzik , Jacek Hendiger , José E. Piñero , Jarosław Grobelny , Katarzyna Ranoszek-Soliwoda , Jacob Lorenzo-Morales

Background Free-living amoebae of the genusAcanthamoebaare cosmopolitan, widely distributed protozoans that cause a severe, vision-threatening corneal infection known asAcanthamoebakeratitis (AK). The majority of the increasing number of AK cases are associated with contact lens use. Appropriate eye hygiene and effective contact lens disinfection are crucial in the prevention of AK because of the lack of effective therapies against it. Currently available multipurpose contact lens disinfection systems are not fully effective againstAcanthamoebatrophozoites and cysts. There is an urgent need to increase the disinfecting activity of these systems to prevent AK infections. Synthesized nanoparticles (NPs) have been recently studied and proposed as a new generation of anti-microbial agents. It is also known that some plant metabolites, including tannins, have anti-parasitic activity. The aim of this study was to evaluate the anti-amoebic activity and cytotoxicity of tannic acid-modified silver NPs (AgTANPs) conjugated with selected multipurpose contact lens solutions.MethodsThe anti-amoebic activities of pure contact lens care solutions, and NPs conjugated with contact lens care solutions, were examined in vitro by a colorimetric assay based on the oxido-reduction of alamarBlue. The cytotoxicity assays were performed using a fibroblast HS-5 (ATCC CRL-11882) cell line. The results were statistically analysed by ANOVA and Student-Newman-Keuls test usingP< 0.05 as the level of statistical significance.ResultsWe show that the NPs enhance the anti-Acanthamoebaactivities of the tested contact lens solutions without increasing their cytotoxicity profiles. The activities are enhanced within the minimal disinfection time recommended by the manufacturers.ConclusionsThe conjugation of the selected contact lens solutions with AgTANPs might be a novel and promising approach for the prevention of AK infections among contact lens users.

Further information

List of papers in WUT respository

Zmiana rozmiaru fontu