Investigation of Low-Cost and Optical Particulate Matter Sensors for Ambient Monitoring
Mariusz Rogulski , Artur Jerzy Badyda
This article presents a long-term evaluation of low-cost particulate matter (PM) sensors in a field measurements campaign. Evaluation was performed in two phases. During the first five months of the campaign, two PM sensors were simultaneously compared with the results from the reference air quality monitoring station in various atmospheric conditions—from the days with freezing cold (minimum temperature below −10 °C) and high relative humidity (up to 95%) to the days with the maximum temperature above 30 °C and low relative humidity (at the level of 25%). Based on the PM10 measurements, the correlation coefficients for both devices in relation to the reference station were determined (r = 0.91 and r = 0.94, respectively), as well as the impact of temperature and relative humidity on measurements from the low-cost sensors in relation to the reference values. The correction function was formulated based on this large set of low-cost PM10 measurements and referential values. The effectiveness of the corrective function was verified during the second measurement campaign carried out in the city of Nowy Sącz (located in southern Poland) for the same five months in the following year. The absolute values of the long-term percentage errors obtained after adjustment were reduced to a maximum of about 20%, and the average percentage errors were usually around 10%.