Changes in Temperature and Precipitation Trends in Selected Polish Cities Based on the Results of Regional EURO-CORDEX Climate Models in the 2030–2050 Horizon
Joanna Strużewska, Jacek W. Kamiński, Maciej Krystian Jefimow
This study presents the potential impacts of climate change in 49 Polish cities by analyzing seven climate indicators. The analysis was carried out for the following three horizons: the current climate conditions (an average period spanning 2006 to 2015), near-future conditions (an average period spanning 2026 to 2035), and future conditions (an average period spanning 2046 to 2055). Climate indices were computed with bias-corrected EURO-CORDEX model ensembles from two Representative Concentration Pathway scenarios, RCP4.5 and RCP8.5. The systematic error was reduced using the quantile mapping method with a non-parametric approach of robust empirical quantiles (RQUANT). Data were used as references in the period of current climate conditions, and those required for bias correction consisted of historical ground-based observations provided by the Institute of Meteorology and Water Management. The analysis encompassed various key climate indices, including the annual average temperature, the count of hot days, cold days, and frost days, the cumulative annual precipitation, the frequency of days with precipitation, and instances of extreme precipitation (defined as the days with precipitation exceeding 10 mm/day). These findings reveal a noteworthy rise in the average annual temperature of approximately 1 °C and an uptick in the number of hot days by 3.7 days. Conversely, a decline in the number of cold days by approximately 19 days and frost days by 8 days was observed. Additionally, there was an augmentation in the annual precipitation sum, reaching up to 80 mm in RCP 8.5, accompanied by an increase in the number of days with precipitation (up by 3.3 days) and days with extreme precipitation (up by 2 days).