Determination of Rheological Parameters of Non-Newtonian Fluids on an Example of Biogas Plant Substrates
Honorata Jankowska, Aleksandra Dzido, Piotr Krawczyk
Non-Newtonian fluids are commonly used in a wide range of industries; one example are in biogas power plants. Proper measurements and modeling of such fluids can be crucial from the design and operations point of view. Results presented in this study covered seven samples from three plants (a sewage sludge treatment plant, utilization biogas station and a biogas plant in a sugar factory), including mechanically thickened excessive activated sludge (MTEAS), sugar beet pulp (SBP), liquid fruit and vegetable waste (FVW), beet roots (BR) and corn waste (CW); their mixtures were prepared as in a real plant. The total solid content remained below 6.8% for all samples. The apparent viscosity (15 RPM) did not exceed 10 Pas in any sample. A correlation analysis for solvent type influence on the viscosity was carried out. The obtained results were analyzed, and the Herschel–Bulkley rheological model was selected for the fluid description. Then, the Moullinex method was applied to determine the H–B model parameters. The obtained results may contribute to the proper design and operation of various biogas power plants, in which viscosity seems to be one of the crucial flow parameters that influences the device types used, as well as energy consumption.