Effects of various rotational speeds of hydrodynamic disintegrator on carbon, nutrient, and energy recovery from sewage sludge

Justyna Walczak, Aleksandra Dzido, Honorata Jankowska, Piotr Krawczyk, Monika Żubrowska-Sudoł

Until recently, sewage sludge produced in wastewater treatment processes was considered problematic waste. It currently constitutes a valuable substrate for raw materials and energy recovery. One of the methods of intensifying resource recovery from sludge is its pretreatment by means of disintegration methods. This study presents the CFD modelling and experimentally investigates the use of a hydrodynamic cavitation rotor operated with various rotational speeds (1500, 2500, and 300 rpm) for the recovery of organic compounds, nutrients, and energy. Rheological properties of raw sludge, a non-Newtonian fluid, were determined and used in the modelling calculations. Cavitation zones were observed for 2500 rpm and 3000 rpm, although a stronger cavitation effect occurred for a rotational speed of 3000 rpm. A rotational speed of 1500 rpm was too low to generate a pressure drop below 1705 Pa, and no cavitation was recorded. An increase in rotational speed from 1500 rpm to 3000 rpm for each analysed energy density caused an increase in SCOD and nitrogen concentration. Moreover, it was determined that at low energy densities (<105 kJ/L), mechanical tearing was the dominant factor responsible for carbon recovery, and at its higher values (≥105 kJ/L), the cavitation phenomenon became increasingly important. Rotation speed also had a significant effect on methane yield (YCH4). An increase in YCH4 by 6.2% was recorded only for disintegrated sludge at a rotational speed of 1500 rpm in reference to untreated sludge. Disintegration conducted at higher rotational speeds led to a decrease in YCH4 (-0.7% for 2500 rpm and -7.9% for 3000 rpm).

Strona publikacji na serwerze wydawnictwa

Publikacje pracowników w Bazie Wiedzy PW

Zmiana rozmiaru fontu